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Abstract:

The existence of time-dependent variance or conditional variance, commonly called heteroscedasticity, in hydrologic time series
has not been thoroughly investigated. This paper deals with modelling the heteroscedasticity in the residuals of the seasonal
autoregressive integrated moving average (SARIMA) model using a generalized autoregressive conditional heteroscedasticity
(GARCH) model. The model is applied to two monthly rainfall time series from humid and arid regions. The effect of Box–Cox
transformation and seasonal differencing on the remaining seasonal heteroscedasticity in the residuals of the SARIMA model is
also investigated. It is shown that the seasonal heteroscedasticity in the residuals of the SARIMA model can be removed using
Box–Cox transformation along with seasonal differencing for the humid region rainfall. On the other hand, transformation and
seasonal differencing could not remove heteroscedasticity from the residuals of the SARIMA model fitted to rainfall data in the
arid region. Therefore, the GARCH modelling approach is necessary to capture the heteroscedasticity remaining in the residuals
of a SARIMA model. However, the evaluation criteria do not necessarily show that the GARCH model improves the
performance of the SARIMA model. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

During the last decades, hydrological time series analysis
and modelling have received considerable attention for
hydrologic prediction, simulation and forecasting. One of
the main concerns of hydrological time series modelling
is whether the hydrologic variable is governed by a linear
or a nonlinear process through time.
The application of the linear time series models has

been widely discussed in the literature for different
hydrologic and climatic variables such as rainfall (Astel
et al., 2004; Machiwal and Jha, 2008), streamflows
(Ouarda et al., 1997; Adeloye and Montaseri, 2002),
floods (Toth et al., 1999), droughts (Modarres, 2007) and
water quality variables (Worrall and Burt, 1999).
Although there is growing interest in nonlinear analysis of

hydrologic time series, relatively few efforts have been done
in this field. The generalized autoregressive conditional
heteroscedasticity (GARCH) approach, which is commonly
used in modelling the time variation of the second order
moment or the variance of financial time series, can be an
appropriate method for nonlinear modelling of hydrologic
time series. Although the time variation of the variance of
hydrologic variables has been mentioned in the literature,
few studies have applied the GARCH approach to model
this phenomenon in hydrologic variables.
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In a pioneering study, Wang et al. (2005) applied the
GARCH approach to model the heteroscedasticity of
daily and monthly streamflow time series of the upper
Yellow River at Tangnaihai in China. They concluded
that the conventional linear time series models, the
autoregressive model and the deseasonalized autoregres-
sive moving average (ARMA) model, are not sufficient to
describe the time-dependent variance of streamflow and
that a GARCH model needs to be fitted to the residuals of
an ARMA model to capture the time variation behaviour
of the streamflow variance. Chen et al. (2008) applied
linear ARMA and nonlinear ARCH models to model
10-day streamflows of the Wu-Shi River in Taiwan and
verified that nonlinear time series models are superior
to the traditional linear approaches such as an ARMA
model. They reported an increase of the coefficient of
efficiency (CE) from 0.28 for an ARMA model to 0.76
for an ARCH model whereas the mean absolute error
(MAE) was reduced from 60.45 for an ARMA model to
41.35 for an ARCH model. However, no seasonal or
integrated time series model was applied to compare with
a GARCH model in their study.
In another application of the GARCH model, Romilly

(2005) fitted a seasonal autoregressive integrated moving
average (SARIMA) model to the global mean monthly
temperature and mentioned the existence of heterosce-
dasticity in the residuals and the need for applying a
GARCH model to remove it from the residuals. However,
the model comparison in this study indicated that the
SARIMA model performs slightly better than the GARCH
model for the global mean temperature time series
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modelling according to R2 = 0.772, mean absolute error
(MAE=0.084) and the root mean squared error (RMSE=
0.111) for the SARIMA model against R2 = 0.771,
MAE=0.084 and RMSE=0.112 for the GARCH model.
In addition to the fact of rare GARCH model

applications in hydrology, rainfall is a missing variable in
heteroscedastic time series modelling. Rainfall plays a vital
role in the successful development and implementation of
water resource tools to assess engineering and environmental
problems such as flood control, reservoir operation, hydro-
power generation and water quality control. Henceforth, the
efficient rainfall estimation, modelling and forecasting
are a critical mission in hydrology, water resources and
environmental sciences.
The main objective of this study is, therefore, to illustrate

the advantages/disadvantages of a GARCH approach
for modelling the monthly rainfall time series against the
SARIMA model commonly used for monthly hydrologic
time series modelling. In addition, the effect of Box–Cox
transformation on stabilizing the variance of rainfall data
and its effect on the advantages/disadvantages of a GARCH
model are also investigated.
METHODS

SARIMA model

The SARIMA time series model has a general multiplica-
tive form, SARIMA(p,d,q)� (P,D,Q) (Hipel and McLeod,
1996). The first set of brackets contains the order of the
nonseasonal parameters whereas the orders of the seasonal
parameters are listed inside the second set of brackets.
The mathematical formulation of a SARIMA(p,d,q)�

(P,D,Q) model can be written as follows:

fp Bð ÞΦP BS
� �rdrS

DYt ¼ θq Bð ÞYQ BS
� �

at (1)

where Yt is the observed time series, fp(B) is a polynomial
of order p, θq(B) is a polynomial of order q,ΦP andYQ are
the seasonal polynomials of order P and Q, r dandrD

S are
the nonseasonal and seasonal differencing operators,
respectively, B is the backward operator, S represents the
number of seasons per year and at is an independent
identically distributed (i.i.d.) normal error with a zero mean
and standard deviation sa, respectively.
The SARIMA model in Equation (1) is referred to as a

multiplicative model, as the nonseasonal and seasonal
autoregressive operators are multiplied together on the
left-hand side whereas the two moving average operators
are multiplied together on the right-hand side (Hipel and
McLeod, 1996). Building the above SARIMA model
from the observations includes three steps: model
identification, parameter estimation and goodness-of-fit
test or checking model adequacy. When the order of
parameters of an initial model is identified according to
the structure of the autocorrelation function (ACF) and its
(significant) parameters are estimated using a method of
estimation such as the method of moments or the method
of maximum likelihood, the model adequacy should be
Copyright © 2012 John Wiley & Sons, Ltd.
checked. The details of model building can be found in
Hipel and McLeod (1996).
For checking the adequacy of a model, the ACF of the

residuals of a SARIMA model (e) is first inspected. It is
well known that for random and independent series
of length n, the lag k autocorrelation coefficient is
normally distributed with a mean zero and a variance 1/n,
and the 95% confidence limits are given by �1:96=

ffiffiffi
n

p
.

If all autocorrelation coefficients fall within the
confidence limits, the adequacy of the time series model
is accepted.
More formally, the Ljung–Box lack-of-fit test (commonly

called the portmanteau lack-of-fit test) is also used to test the
adequacy of the SARIMAmodel. The Portmanteau lack-of-
fit-test (Ljung and Box, 1978) computes a statistic Q, which
is w2distributed on (L� p� q) degrees of freedom and is
given by

Q ¼ N N þ 2ð Þ
XL
k¼1

N � kð Þ�1r2k eð Þ (2)

where N is the sample size; L is the number of
autocorrelations of the residuals included in the statistic,
which can be 15 to 25 for nonseasonal models and 2 S to
4 S for seasonal models (Hipel and McLeod, 1996); and rk
is the sample autocorrelation of the residual time series, e,
at lag k. If the probability of Q is higher than a= 0.05,
there is strong evidence that the residuals are time
independent and the model is adequate. If this probabil-
ity is less than a = 0.05, it is reasonable to conclude that
the residuals are time dependent and the model is
inadequate, and we need to repeat the process of model
building to achieve an adequate model (Hipel and
McLeod, 1996).

GARCH modelling approach

By applying a SARIMA model, the dependence of
an observation at time t, Yt, to the previous observations,
Yt–1, Yt–2, . . ., Yt–p, or the conditional mean, is considered
for time series modelling. Although the errors or the
residuals of a SARIMA model may exhibit adequacy,
conditional variance or time-dependent variance may
exist in the residuals, which can be captured by a GARCH
model. This type of model is also called a SARIMA–
GARCH error model, as the conditional variance of the
residuals of a SARIMA model will be modelled by a
GARCH approach. To describe a GARCH modelling
approach, the ARCH model is first described.
If the conditional mean is described by a SARIMA

model, the Vth order of the ARCH(V) model for the
conditional variance of the residuals of a SARIMA
model, (st), is defined as follows (Engle, 1982):

s2t ¼ oþ a1e2t�1 þ a2e2t�2 þ . . .þ aVe2t�V

¼ oþ
XV
i¼1

aVe2t�V (3)
Hydrol. Process. (2012)



MODELLING RAINFALL HETEROSCEDASTICITY
et ¼ stet et eNormal 0; 1ð Þ (4)

where et indicates the residuals of the SARIMA model
that are uncorrelated but have variances that change over
time; et denotes a real valued i.i.d. random variable with
mean 0 and variance 1, independent of past realizations
(et� 1, et� 2, . . .); a1, . . ., aV are the parameters of the
ARCH model; and o is a constant (Wei, 2006). In this
model, the variance of the error is time varying and
depends on the V past errors, e2t�1, e

2
t�2,. . ., e

2
t�V through

their squares.
The GARCH model, introduced by Bollerslev (1986),

improves the original specification by adding lagged
conditional variance, which acts as a smoothing term.
The GARCH(V,M) model is defined as follows:

s2t ¼ oþ
XV
i¼1

aVe2t�V þ
XM
j¼1

bMs
2
t�M (5)

et ¼ stet et eNormal 0; 1ð Þ (6)

where a1, . . ., aV and b1, . . .,bM are the parameters of
the GARCH(V,M) process. Therefore, the SARIMA–
GARCH(V,M) model is one in which the conditional
mean is described by a SARIMA model whereas the
conditional variance is described by a GARCH(V,M)
model.

Tests for the ARCH effect

Although the ACF of the residuals and the Ljung–Box
lack-of-fit test are usually used for time series model
adequacy analysis, the variance time-dependent character-
istics of the residuals cannot be inspected using the ACF of
the residuals. Bollerslev (1986) stated that the ACF of the
standardized squared residuals (SSRs, hereafter) is useful
for identifying and checking the heteroscedasticity of
residuals. In order to check if the variance of the residuals
is conditional on its history or, in other words, if the
residuals exhibit an ARCH effect, we apply the commonly
used Ljung–Box and Engle’s Lagrange Multiplier tests for
the SSRs.
The Ljung–Box lack-of-fit test for SSRs is calculated

through Equation (2) but for the SSR time series (e2):

Q ¼ N N þ 2ð Þ
XL
k¼1

N � kð Þ�1r2k e2
� �

(7)

Under the null hypothesis of no ARCH effect in the
residuals, the test statistic is asymptotically chi-squared
distributed.
The Engle’s Lagrange Multiplier test for the ARCH

effect was proposed by Engle (1982). The test statistic is
given by NR2, where R is the sample multiple correlation
coefficient computed from the regression of e2t on a
constant and e2t�1; . . . ; e

2
t�V and N is the sample size. The

null hypothesis of no ARCH effect is accepted if the
test statistic is asymptotically distributed as a chi-squared
Copyright © 2012 John Wiley & Sons, Ltd.
distribution with v degrees of freedom. The test can
also be used to investigate the GARCH effect of SSRs
(Bollerslev, 1986).

Data transformation

Although a few studies have applied GARCH models
in hydrology, the existence of conditional variance in
hydrologic variables has already been addressed for a long
time, and some methods have been used to stabilize this
variance. The Box–Cox class of power transformation
technique (Box andCox, 1964) is themost commonmethod
for variance stabilization. Box–Cox transformation can be
expressed by the following equation:

YB�C
i ¼

Yl
i � 1
l

if l 6¼ 0

log Yið Þ if l ¼ 0

8<: (8)

where YB�C
i is the Box–Cox transformed data, Yi is the

original time series and l is the power parameter chosen
to ensure that the transformed data are approximately
Gaussian. Box–Cox transformation is assumed to
stabilize the variance of a time series so that no further
ARCH effect is observed in the residuals of a time series
model. The optimum value of l is chosen based on a
Box–Cox normality plot, which indicates the variation
of l against the correlation coefficient of a normal
probability plot. The value of l corresponding to the
maximum correlation is then the optimal choice for l
(Lye, 1993).

Comparison approach

The time series modelling approaches used in this
study are compared through a multi-criteria comparison
by applying a set of evaluation metrics (Modarres, 2009).
The evaluation metrics can be classified into three groups:
metrics that calculate the absolute error, metrics that
calculate the relative error and the dimensionless metrics
(Dawson et al., 2007). In this study, the following
evaluation metrics of the above categories are used:

1. Metrics for calculating absolute errors

1.1 Absolute maximum error (AME)

AME ¼ max Qi � Q̂i

�� ��� �
(9)

1.2 Peak difference (PDIFF)

PDIFF ¼ max Qið Þ � max Q̂i

� �
(10)

1.3 Mean absolute error (MAE)

MAE ¼ 1
n

X
Qi � Q̂i

�� �� (11)
Hydrol. Process. (2012)
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1.4 Root mean squared error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Qi � Q̂i

� �2
n

vuuut
(12)

2. Metrics for calculating relative errors

2.1 Relative absolute error

RAE ¼
Pn
i¼1

Qi � Q̂i

�� ��
Pn
i¼1

Qi � �Qij j
(13)

2.2 Mean relative error

MRE ¼ 1
n

Xn
i¼1

Qi � Q̂i

Qi

� �
(14)

3. Dimensionless metrics

3.1 Coefficient of determination (R-squared)

R2 ¼
Pn
i¼1

Qi � �Qð Þ Q̂i � ~Q
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Qi � �Qð Þ2 Pn
i¼1

Q̂i � ~Q
� �2s

266664
377775
2

(15)

3.2 Coefficient of efficiency (CE)

CE ¼ 1�
Pn
i¼1

Qi � Q̂i

� �2
Pn
i¼1

Qi � �Qð Þ2
(16)

3.3 Index of agreement (IoAd)

IoAd ¼ 1�
Pn
i¼1

Qi � Q̂i

� �2
Pn
i¼1

Q̂i � �Q
�� ��þ Qi � �Qj j� �2 (17)

In these equations, Qiis the observed time series, Q̂iis
the predicted time series, and �Q and ~Qare the mean of the
observed and predicted time series, respectively.
Although the above criteria allow us to sort models

based on their accuracy, it is also important to test
whether the improvement of model accuracy between two
competing models is statistically significant. To address
this issue, we use a test statistic proposed by Diebold
and Mariano (1995), which is already used in financial
time series but is applied and reported for the first time
in hydrological sciences. Although this test is usually
Copyright © 2012 John Wiley & Sons, Ltd.
used for out-of-sample forecasting accuracy analysis
(i.e. Mohammadi and Su, 2010), here, we use it for
within-sample prediction accuracy testing. In our case,
this test can indicate if there is a significant difference
between SARIMA and SARIMA–GARCH’s performances
for predicting (estimating) rainfall time series.
Formally, let e1,t and e2,t, t = 1, . . ., n, denote model

errors from SARIMA an SARIMA–GARCH models and
g(e1,t) and g(e2,t) are their associated loss functions and
dt= g(e1, t)� g(e2, t). Diebold and Mariano (1995) defined
the B statistics:

B ¼
�dffiffiffi
s

n

r eN 0; 1ð Þ
(18)

where �d is the sample mean, s is the variance of loss
differential and n is the number of observations. Under a
null hypothesis of zero mean loss differential, the null
hypothesis of equal modelling accuracy is rejected if the
test statistic is negative and statistically significant.
APPLICATIONS AND CASE STUDIES

In this section, we illustrate the application of the above
methods for two monthly rainfall time series, one from a
humid region and the other from an arid region. These
two rainfall data sets are selected to investigate and
compare the ARCH effect of rainfall in the two regions and
to evaluate the GARCHmodel efficiency and advantage for
modelling the rainfall heteroscedasticity in the humid and
arid regions.

Rainfall for a humid region

Data. The first case study includes the monthly time
series of the Campsie station (54�07’N and 114�40’W),
Alberta province (station elevation: 670.6m), Canada.
The mean annual rainfall in the Campsie station is
343mm for the period of 1950–2008. The monthly
rainfall time series of the Campsie station is illustrated in
Figure 1a. The monthly distribution of the mean and
standard deviation (STDEV) of rainfall (Figure 1b)
indicates seasonality in both rainfall depth and variance
in the Campsie station. In the following sections, the
results of time series models fitted to both original and
transformed data are given and discussed.

Results for modelling original data. Because the ACF
of rainfall time series (Figure 2a) indicates a strong
seasonal structure, the SARIMA(1,0,1)12 model is fitted
to the rainfall data. This model includes two seasonal
autoregressive and moving average parameters of order 1
that are significant at the 95% level and do not include
any nonseasonal parameters.
The adequacy of the SARIMA(1,0,1)12 model is verified

using the Ljung–Box statistics and the ACF of the residuals.
The ACF of the residuals (Figure 2b) indicates no
Hydrol. Process. (2012)



Figure 1. (a) Monthly rainfall time series and (b) monthly distribution of rainfall mean and standard deviation of the Campsie station for 1956–2008

Figure 2. (a) ACF of monthly rainfall time series and (b) ACF of the residuals of the SARIMA(1,0,1)12 model for the Campsie station
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autocorrelation structure in the residuals, as all coefficients
fall within the confidence limit. No seasonality is observed
in the residuals, as the coefficients at lags k= 12, 24, 36, . . .
also fall within the confidence interval.
The results of the Ljung–Box test (Figure 3a) also

show the adequacy of the model, as the P-values of the
Ljung–Box statistic (Q) exceed the critical value (a =0.05).
Therefore, the null hypothesis of no autocorrelation structure
in the residuals cannot be rejected.
Although the residuals seem statistically uncorrelated

according to the ACF and no seasonal structure is observed
in the residuals, the ACF of the SSRs is investigated to
check the presence of the ARCH effect. The ACF of the
SSRs is given in Figure 3b, which illustrates the existence
Copyright © 2012 John Wiley & Sons, Ltd.
of an ARCH effect in the SSRs of the SARIMA(1,0,1)12
model. A seasonal heteroscedasticity is also observed
in the SSRs of the SARIMA(1,0,1)12 model, as the
autocorrelation coefficients exceed the confidence limit at
lags k=12, 24, 36, . . .. The P-values of the Engle’s test for
the ARCH effect of SSRs of the SARIMA(1,0,1)12 model are
presented in Figure 3c, which illustrates the presence of
heteroscedasticity in the SSRs of the SARIMA(1,0,1)12
model. For all lags, the P-values of the test are less than the
critical value (a =0.05), and the null hypothesis of no ARCH
effect is rejected. In other words, the heteroscedasticity of the
residuals of the SARIMA(1,0,1)12 model is significant, and
we need to apply a GARCH approach to remove it from the
residuals of the SARIMA(1,0,1)12 model.
Hydrol. Process. (2012)



Figure 3. (a) P-values of the Ljung–Box test of the residuals, (b) autocorrelation function and (c) P-values of the Engle’s test for the SSRs of the
SARIMA(1,0,1)12 model

R. MODARRES AND T. B. M. J. OUARDA
As seasonality is also observed in the SSRs of the
SARIMA(1,0,1)12 model, we first try to remove this seasonal
variance by adding a seasonal differencing parameter and
fitting a SARIMA(1,1,2)12 model to the rainfall data. This
model includes a seasonal autoregressive parameter, two
seasonal moving average parameters and a seasonal
differencing operator, rS

D.
The ACF of the residuals is first investigated for validating

the adequacy of the model. The ACF of the residuals
(Figure 4a) indicates the appropriateness of the model, as the
autocorrelation coefficients are within the confidence interval
of ACF. The Ljung–Box test for the residuals also indicates
Figure 4. (a) Autocorrelation function of the residuals, (b) P-values of the L
SSRs of the SARIM

Copyright © 2012 John Wiley & Sons, Ltd.
the adequacy of the SARIMA(1,1,2)12 model for the
rainfall time series of the Campsie station (Figure 4b). All
P-values of the test lie outside the critical level (a = 0.05)
and reject the existence of an autocorrelation structure in
the residuals.
For testing the ARCH effect, the Engle’s test is used for

the SSRs of the SARIMA(1,1,2)12 model. The P-values
of the test (Figure 4c) show that the null hypothesis of
no ARCH effect in the SSRs of the SARIMA(1,1,2)12
model is rejected, and no improvement of the sea-
sonal heteroscedasticity stabilization is also observed in
the SSRs of the SARIMA(1,1,2)12 model. Therefore,
jung–Box test of the residuals and (c) P-values of the Engle’s test for the
A(1,1,2)12 model

Hydrol. Process. (2012)
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adding a seasonal differencing parameter cannot remove
the seasonal heteroscedasticity, and we try fitting a
GARCH model to the residuals of both the SARIMA
(1,0,1)12 and SARIMA(1,1,2)12 models to stabilize the
heteroscedasticity.
A GARCH(1,1) model is first fitted to the residuals of

the SARIMA(1,0,1)12 model. To test the existence of an
ARCH effect, the ACF of the SSRs of SARIMA(1,0,1)
12–GARCH(1,1) (given in Figure 5a) is inspected. The
figure indicates some reduction in the autocorrelation
structure of the residuals comparing to the ACF of SSRs
for the SARIMA(1,0,1)12 model given in Figure 3b. For
example, the autocorrelations at lags k = 1 to k= 10 and
k=13 to k=20 in the ACF of the SSRs of SARIMA(1,0,1)
12–GARCH(1,1) (Figure 5a) are within the confidence
interval whereas these autocorrelations are significant in
Figure 5. (a) Autocorrelation function and (b) P-values of the Engle’s test for
the Campsi

Copyright © 2012 John Wiley & Sons, Ltd.
Figure 3b. However, the seasonality still exists in the SSRs
of SARIMA(1,0,1)12–GARCH(1,1).
The P-values of the Engle’s test for the ARCH effect

are also shown in Figure 5b. It can be seen that except for
the first four lags (k= 1–4), all P-values are significantly
below the critical value (a = 0.05), and the null hypothesis
of no ARCH effect is rejected. Therefore, the SARIMA
(1,0,1)12–GARCH(1,1) model is not able to remove the
conditional variance, especially the seasonal conditional
variance, of the monthly rainfall at the Campsie station.
In the following, a GARCH(1,2) model is fitted to the

residuals of the SARIMA(1,1,2)12 model. The ACF of the
SSRs of the SARIMA(1,1,2)12–GARCH(1,2) model is
presented in Figure 6a. This figure illustrates no significant
autocorrelation structure, as all the coefficients at different
lags are within the confidence interval up to lag k=39. The
the SSRs of the SARIMA(1,0,1)12–GARCH(1,1) model for rainfall data of
e station

Hydrol. Process. (2012)



Figure 6. (a) Autocorrelation function and (b) P-values of the Engle’s test for the SSRs of the SARIMA(1,1,2)12–GARCH(1,2) model for rainfall data of
the Campsie station

R. MODARRES AND T. B. M. J. OUARDA
significant autocorrelation at lag k=39 could be considered
as a random effect in the heteroscedasticity of rainfall.
The major feature of Figure 6a is that the seasonal

autocorrelation coefficients at lags k = 12, 24, 36 and 48
are not significant. This is an important advantage of
using a seasonal ARIMA model with an appropriate
differencing parameter together with a GARCH approach to
remove the seasonal heteroscedasticity from the seasonal
hydrologic time series. The P-values of the Engle’s test
given in Figure 6b also verify the advantage of GARCH
modelling approach together with seasonal differencing to
stabilize the conditional variance of rainfall time series.
All P-values are larger than the critical value (a = 0.05),
and the null hypothesis of no ARCH effect in the residuals
of the SARIMA(1,1,2)12–GARCH (1,2) model cannot
be rejected.
Copyright © 2012 John Wiley & Sons, Ltd.
Results for modelling transformed data. In addition to
the investigation of the effect of seasonal differencing on
stabilizing the seasonal heteroscedasticity, Box–Cox
transformation is also used to stabilize the variance of
the rainfall time series. The power parameter of the
Box–Cox transformation is l= 0.112.
To investigate the effect of seasonal differencing

on removing the heteroscedasticity from residuals, two
SARIMA models are fitted to the transformed data. In the
first model, no seasonal differencing parameter is added
whereas for the second model, a seasonal differencing
parameter is also included.
The first SARIMA model for Box–Cox transformed

rainfall time series of the Campsie station includes two
seasonal and two nonseasonal parameters of order 1 to
obtain the SARIMA(1,0,1)� (1,0,1) model. The ACF and
Hydrol. Process. (2012)
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the P-values of the Ljung–Box test for the residuals of the
model, given in Figure 7a and b, respectively, indicate the
acceptance of the null hypothesis of model adequacy.
However, if the SSRs of the model are examined for
an ARCH effect, a seasonal heteroscedasticity can be
observed in the residuals of the SARIMA(1,0,1)� (1,0,1)
model (Figure 7c), as the autocorrelation coefficients at
lags k = 12, 24 and 36 are significant whereas other
autocorrelation coefficients are within the confidence
level. The P-values of the Engle’s test for SSRs are also
given in Figure 7d. It can be seen that most of the P-
values, but not all of them, are larger than the critical
value (a = 0.05). Some P-values at lags k = 12 to k = 16
are less than the critical value and imply the existence of
an ARCH effect in the residuals. The Engle’s test
indicates that the Box–Cox transformation has stabilized
the heteroscedasticity of the residuals to a very low level
but that some seasonal conditional variances still remain
in the residuals. This suggests the need of a GARCH
model to stabilize the remaining heteroscedasticity of the
SARIMA(1,0,1)� (1,0,1) model fitted to the Box–Cox
transformed data. Therefore, we fit a GARCH(1,1)
model to the residuals of the SARIMA(1,0,1)� (1,0,1)
model. The residuals of the SARIMA(1,0,1)� (1,0,1)–
GARCH(1,1) model are then checked for the ARCH
effect, inspecting the ACF of SSRs and the P-values of
the Engle’s test. The results are given in Figure 8. This
figure illustrates that the autocorrelation coefficients are
within the confidence level of ACF and are not
significant. The seasonal autocorrelation coefficients at
lags k = 12, 24, 36, . . . are also insignificant. The result
of the Engle’s test also indicates no ARCH effect in the
SSRs of the GARCH model. Therefore, the SARIMA
Figure 7. (a) Autocorrelation function of the residuals, (b) P-values of the Lju
(d) P-values of the Engle’s test of the SSRs of the SARIMA(1,0,1)� (1,0

Copyright © 2012 John Wiley & Sons, Ltd.
(1,0,1)� (1,0,1)–GARCH(1,1) model is sufficient for
modelling the conditional variance of rainfall time series
of the Campsie station.
From the above analysis, a GARCH model seems to be

required for modelling the heteroscedasticity in the residuals
of the SARIMA(1,0,1)� (1,0,1) model fitted to the Box–
Cox transformed rainfall data without using a seasonal
differencing parameter. However, the seasonal differencing
parameter is also included in the model to check if the
seasonal differencing can remove the heteroscedasticity
from residuals so that no ARCH effect remains to be
modelled using a GARCH approach. Adding a seasonal
differencing parameter to the SARIMA(1,0,1)� (1,0,1)
model, wefit a SARIMA(1,0,1)� (1,1,1)model to theBox–
Cox transformed rainfall time series. The adequacy of the
model is confirmed by inspecting the ACF of the residuals
and using the Ljung–Box test.
The ACF and the P-values of the Engle’s test of

SSRs (Figure 9) indicate that if appropriate seasonal
differencing is used with Box–Cox transformation, the
seasonal heteroscedasticity will be stabilized. Neither
nonseasonal nor seasonal heteroscedasticity can be
observed in the ACF of the SSRs of the SARIMA
(1,0,1)� (1,1,1) model fitted to Box–Cox transformed
rainfall data. The P-values of the Engle’s test are also
larger than the critical value, and no ARCH effect exists in
the residuals. Therefore, we agree that an appropriate
transformation and deseasonalization approach would
result in removing the ARCH effect from the residuals of
the SARIMA model for the monthly rainfall data of the
Campsie station and that no further GARCH model is
necessary for stabilizing the conditional variance of the
rainfall data.
ng–Box test for the residuals, (c) autocorrelation function of the SSRs and
,1) model for Box–Cox transformed rainfall data of the Campsie station

Hydrol. Process. (2012)



Figure 8. (a) Autocorrelation function and (b) P-values of the Engle’s test of the SSRs of the SARIMA(1,0,1)� (1,0,1)–GARCH(1,1) model for
Box–Cox transformed rainfall data of the Campsie station

Figure 9. (a) Autocorrelation function and (b) P-values of Engle’s test of the SSRs of the SARIMA(1,0,1)� (1,1,1) model for Box–Cox transformed
rainfall data of the Campsie station

R. MODARRES AND T. B. M. J. OUARDA
Rainfall for an arid region

Data. The second case study deals with modelling
the monthly rainfall time series of the Isfahan station
(32�37’N and 51�40’E), Isfahan province (elevation:
1550.4m), Iran. The station is located in the semi-arid
region of Iran with a mean annual rainfall of 122.8mm for
the period 1951–2005. The monthly rainfall time series of
the Isfahan station and the monthly distribution of the
rainfall mean and standard deviation are given in Figure 10a
and b, respectively.
In the following two sections, we present the results

of time series modelling for the original and Box–Cox
Copyright © 2012 John Wiley & Sons, Ltd.
transformed rainfall data of the Isfahan station to discuss
the ARCH effect of the rainfall in an arid region.

Results for modelling original data. The ACF of the
rainfall (Figure 11a) indicates the seasonal behaviour of
rainfall at the Isfahan station. Therefore, the SARIMA
(0,0,1)� (1,0,1) model is first fitted to rainfall data. This
model has three parameters: one nonseasonalmoving average
parameter and two seasonal autoregressive and seasonal
moving average parameters, all of order 1. The ACF of the
residuals of this model (Figure 11b) and the P-values of
Ljung–Box test (Figure 11c) indicate the adequacy of the
Hydrol. Process. (2012)



Figure 10. (a) Monthly rainfall time series and (b) monthly distribution of rainfall mean and standard deviation of the Isfahan station for 1951–2005

Figure 11. (a) ACF of the Isfahan rainfall time series, (b) ACF of the residuals and (c) P-values of the Ljung–Box test of the SARIMA(0,0,1)� (1,0,1)
model for the Isfahan station

MODELLING RAINFALL HETEROSCEDASTICITY
model. The existence of an ARCH effect in the SSRs of the
above model is investigated by inspecting the ACF of SSRs
and using the Engle’s test. The ACF (Figure 12a) indicates
neither nonseasonal nor seasonal heteroscedasticity in the
residuals, as the autocorrelation coefficients are within the
confidence limits. However, at lags k=8 and k=20, two
autocorrelation coefficients fall outside the confidence level.
The P-values of the Engle’s test (Figure 12b) prove no
ARCH effect in the SSRs of the SARIMA(0,0,1)� (1,0,1)
model and suggest that the significant autocorrelation
coefficients at lags k=8 and k=20 could be considered as
random effects on the conditional variance of rainfall at the
Isfahan station.
Copyright © 2012 John Wiley & Sons, Ltd.
Adding seasonal differencing to the above model to
obtain a SARIMA(0,0,1)� (1,1,1) model shows the same
adequacy of the model according to the ACF and P-values
of the Ljung–Box test and the same ARCH structure in
the residuals as those for the SARIMA (0,0,1)� (1,0,1)
model. No seasonal heteroscedasticity is observed, and the
autocorrelation coefficients are still significant at lags k= 8
and k= 20.
The significant autocorrelation coefficients at lags k= 8

and k= 20 could be considered as random conditional
variances of rainfall at the Isfahan station. These random
effects could be related to an uncertainty in climate
conditions in the arid regions. The timing and amount of
Hydrol. Process. (2012)



Figure 12. (a) Autocorrelation function and (b) P-values of the Engle’s test of the SSRs of the SARIMA(0,0,1)� (1,0,1) model for the Isfahan station

R. MODARRES AND T. B. M. J. OUARDA
precipitation indicate a high irregular fluctuation in
the arid regions and may impose random effects on the
conditional variance of rainfall.
One can accept that SARIMA(0,0,1)� (1,1,1) is enough

for modelling the rainfall time series of the Isfahan station
at this level considering the lags k=8 and k=20 as random
ARCH effects and does not feel necessary to use a
GARCH model to remove these random effects. Never-
theless, we continue our modelling approach by fitting a
GARCH model to the residuals of the SARIMA model in
order to investigate the advantage/disadvantage of the
GARCH models.
Trying to remove the random ARCH effect from the

residuals by fitting a GARCH model, we use SARIMA
(0 ,0 ,1 ) � ( 1 ,0 ,1 )–GARCH(0 ,2 ) and SARIMA
Figure 13. (a) Autocorrelation function and (b) P-values of the Engle’s test
Isfahan s

Copyright © 2012 John Wiley & Sons, Ltd.
(0,0,1)� (1,1,1)– GARCH(0,2). As the ACF and the
Engle’s test for the residuals of both the above models are
the same, we illustrate the ACF of the SSRs and the
P-values of the Engle’s test for the SARIMA
(0,0,1)� (1,1,1)–GARCH(0,2) model in Figure 13a and
b, respectively. No ARCH effect is observed in the
residuals of the SARIMA(0,0,1)� (1,1,1)–GARCH (0,2)
model, as all autocorrelation coefficients fall within the
confidence interval of the ACF and all P-values are larger
than the critical value. It is important to note that neither
nonseasonal nor seasonal heteroscedasticity is observed
in the residuals of the GARCHmodel and that the random
conditional variances at lags k = 8 and k = 20 have also
been removed from the residuals. This suggests the
appropriateness of a GARCH approach for modelling the
of the SSRs of the SARIMA(0,0,1)� (1,1,1)–GARCH(0,2) model for the
tation

Hydrol. Process. (2012)



MODELLING RAINFALL HETEROSCEDASTICITY
heteroscedasticity of rainfall time series in an arid region
where rainfall indicates irregular temporal fluctuations
and variation.

Results for modelling transformed data. Time series
modelling of the original rainfall data of Isfahan indicates
the advantage of using a GARCH model to remove
the conditional variance of the residuals of a SARIMA
model. However, we also apply a transformation method
to check if it will reduce the heteroscedasticity of rainfall
data so that no ARCH effect remains to be modelled by a
GARCH approach.
The Box–Cox transformation method with l = 0.056

is applied to transform the rainfall data of the Isfahan
Figure 14. (a) ACF of the residuals and (b) P-values of the Ljung–Box test
data of the Isf

Figure 15. (a) Autocorrelation function and (b) P-values of the Engle’s
transformed rainfall data

Copyright © 2012 John Wiley & Sons, Ltd.
station. Two SARIMA models with and without a
differencing parameter are then fitted to the transformed
data in order to see the adequacy of Box–Cox transform-
ation in removing heteroscedasticity from the residuals of
the SARIMA models.
The SARIMA model fitted to the transformed data

without applying seasonal differencing is SARIMA
(0,0,2)� (1,0,2). The model is adequate according to
the ACF (Figure 14a) and P-values of Ljung–Box
(Figure 14b) of the residuals.
The heteroscedasticity remaining in the residuals of the

above model is investigated by checking the ACF of SSRs
(Figure 15a) and using the Engle’s test for an ARCH effect
(Figure 15b). The ACF of the SSRs indicates the existence
of the SARIMA (0,0,2)� (1,0,2) model for Box–Cox transformed rainfall
ahan station

test of the SSRs of the SARIMA(0,0,2)� (1,0,2) model for Box–Cox
of the Isfahan station

Hydrol. Process. (2012)



R. MODARRES AND T. B. M. J. OUARDA
of both nonseasonal and seasonal heteroscedasticity. The
results of the Engle’s test also indicate an ARCH effect in
the residuals of the SARIMA(0,0,2)� (1,0,2) model fitted
to the Box–Cox transformed data.
By adding a seasonal differencing operator to the above

model, the effect of seasonal differencing on stabilizing
the seasonal heteroscedasticity is examined. The SAR-
IMA(0,0,2)� (1,1,2) model is also adequate according to
the Ljung–Box test for the residuals. However, both
seasonal heteroscedasticity and nonseasonal heterosce-
dasticity are still observed in the SSRs (Figure 16a). The
Engle’s test indicates some improvement of modelling
heteroscedasticity of the residuals with the addition of a
Figure 16. (a) Autocorrelation function and (b) P-values of the Engle’s
transformed rainfall data

Figure 17. (a) Autocorrelation function and (b) P-values of the Engle’s te
Box–Cox transformed rainfal

Copyright © 2012 John Wiley & Sons, Ltd.
seasonal differencing parameter to the model inasmuch as
some of the P-values are larger than the critical value
(a= 0.05) (Figure 16b). However, the ARCH effect still
remains in the residuals, and we need to apply a GARCH
approach to model this heteroscedasticity in the residuals.
The GARCH model is then fitted to the residuals to

obtain a SARIMA(0,0,2)� (1,0,2)–GARCH(2,3) model.
To check the ARCH effect of the residuals, the ACF of
SSRs and the P-values of the Engle’s test are given in
Figure 17. The ACF of SSRs (Figure 17a) indicates the
adequacy of the GARCH approach for modelling the
heteroscedasticity of rainfall time series. However, a very
weak seasonal heteroscedasticity is observed as the seasonal
test of the SSRs of the SARIMA(0,0,2)� (1,1,2) model for Box–Cox
of the Isfahan station

st of the SSRs of the SARIMA(0,0,2)� (1,0,2)–GARCH(2,3) model for
l data of the Isfahan station

Hydrol. Process. (2012)



MODELLING RAINFALL HETEROSCEDASTICITY
autocorrelation coefficients at lags k=12 and k=24 fall
outside the confidence level. If we fit a GARCHmodel to the
residuals of the SARIMA(0,0,2)� (1,1,2) model to obtain a
SARIMA(0,0,2)� (1,1,2)–GARCH(2,2) model, the evident
of the weak heteroscedasticity is also removed. The ACF
and the P-values of the Engle’s test for the above model
are given in Figure 18a and b, respectively. It is clear
that the GARCH model has removed both seasonal and
nonseasonal heteroscedasticity from the residuals.
Modelling the transformed data suggests that Box–Cox

transformation and seasonal differencing cannot remove
conditional variance from the residuals of the Isfahan
station without applying a GARCH model.
MODEL COMPARISON

This section provides the criteria for model performance
evaluation and cross-comparison of the SARIMA and
GARCH models fitted to rainfall data at the Campsie and
Isfahan stations.
Firstly, the criteria for the Campsie station are

considered (Table I). For the original rainfall data, the
SARIMA model with a seasonal differencing parameter,
SARIMA(1,1,2)12, indicates a slightly better perform-
ance than other models according to RMSE, AME and
PDIFF. It suggests that SARIMA(1,1,2)12 is a better model
for predicting peak rainfall in the Campsie station than
other models. Although the performances of the SARIMA
and GARCH models look almost the same based on the
error and dimensionless metrics, the Diebold–Mariano
(DM) statistic indicates a significant difference between
SARIMA and SARIMA–GARCH’s performances with
and without seasonal differencing. Nevertheless, the
model with a seasonal differencing parameter indicates
more negative DM statistics compared with the model
without differencing.
Figure 18. (a) Autocorrelation function and (b) P-values of the Engle’s tes
Box–Cox transformed rainfall

Copyright © 2012 John Wiley & Sons, Ltd.
On the other hand, for Box–Cox transformed data, the
SARIMA and GARCH models seem to relatively
outperform the SARIMA and GARCH models fitted to
the original rainfall data according to dimensionless
metrics. However, no improvement in model accuracy
is observed comparing the GARCH model with the
SARIMA model for the Box–Cox transformed rainfall
time series of the Campsie station according to DM
statistics. This suggests that the application of a GARCH
model for the rainfall data of the Campsie station, as a
sample of a humid region, does not necessarily improve
the performance of a SARIMA model after Box–Cox
transformation.
Looking at the criteria for the Isfahan station in Table II

also suggests that a GARCH model does not improve the
performance of the SARIMA model fitted to the original
rainfall time series.
However, for Box–Cox transformed rainfall time series,

the GARCH models perform better than the SARIMA
models. Both global metrics, R2 and RMSE, show the best
performance for the SARIMA(0,0,2)� (1,1,2)–GARCH
(2,2) model. Based on other error metrics, the GARCH
model also gives the lowest error. The dimensionless
metrics also suggest a better agreement between the
GARCH modelled and observed rainfall than that of the
SARIMA model. However, the null hypothesis of equal
accuracy is rejected for all SARIMA–GARCH against
SARIMAmodels. This suggests that there is no remarkable
difference in the performance of the SARIMA–GARCH
model against a SARIMA model for the Isfahan rainfall
time series. It is also important to note that the performance
of the time series models fitted to transformed rainfall data,
both in arid and humid regions, is much better than the
models fitted to the original data, especially for the rainfall
data of the Isfahan station, for which the performance of the
model is doubled after Box–Cox transformation according
to R2 and CE.
t of the SSRs of the SARIMA(0,0,2)� (1,1,2)–GARCH(2,2) model for
data of the Isfahan station
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MODELLING RAINFALL HETEROSCEDASTICITY
Nevertheless, the DM test results indicate that the null
hypothesis of equal modelling accuracy is only rejected
for SARIMA–GARCH models for original rainfall time
series at the Campsie station. Therefore, one can see that the
main advantage of a GARCHmodel is the ability to capture
the heteroscedasticity of the residuals of a SARIMA model
(as was also reported by Romilly (2005) for global mean
temperature time series modelling) and there is no guarantee
of a better performance by a GARCHmodel, at least for our
case study.
DISCUSSION

The volatility, the time-dependent variance or the condi-
tional heteroscedasticity, is usually neglected in hydrologic
time series modelling. The present study shows that
although the seasonal ARIMA model seems to be adequate
for modelling the conditional mean of the monthly rainfall
time series and its seasonal variation, a seasonal ARCH
effect remains in the residuals. Fitting a SARIMA model to
the sample rainfall data set used in this study, we noticed the
inadequacy of SARIMA models for capturing the seasonal
conditional variance of monthly rainfall for both sample
data sets coming from the humid and arid regions evenwhen
adding a seasonal differencing parameter to the model.
Adding a seasonal differencing parameter to a

SARIMA model does not remove the seasonal hetero-
scedasticity from the residuals of the model. This
phenomenon is observed for rainfall data from both
humid and arid regions. However, the Box–Cox trans-
formation together with seasonal differencing seemed to
be an efficient approach for capturing the seasonal
heteroscedasticity of rainfall data of the humid region
(the Campsie station) but not a sufficient method for the
rainfall data from the arid region (the Isfahan station).
However, these results are explanatory, and future
analyses are necessary to generalize them.
This suggests that there may be a very irregular

conditional variance in rainfall data in arid regions that
cannot be removed by seasonal differencing and Box–Cox
transformation. The remaining of an ARCH effect in the
residuals of the SARIMA model for Box–Cox transformed
rainfall data in the arid region may be due to the
perturbations of temperature and evapotranspiration fluctua-
tions and nonequilibrium interaction of the earth and
atmospheric components in the arid regions. The reasons
for the irregular ARCH effect in the rainfall data of the
Isfahan station and its relationship to (local or regional)
climate fluctuations should be carefully examined using a
larger database in different arid regions of the world.
The investigation of the causes of the seasonal ARCH

effect and the causes of the inadequacy of the linear models
commonly used for seasonal hydrologic time series
modelling is out of the scope of the present study. However,
it can be assumed that the seasonal heteroscedasticity may
be the result of the seasonality of the atmospheric and
climatic factors and components that influence the seasonal
variance of hydrological variables. The irregular pattern of
Copyright © 2012 John Wiley & Sons, Ltd.
the climate fluctuations in the arid regions may result in an
irregular conditional variance of rainfall in these regions
as illustrated by the Isfahan rainfall case study. The above
statement on irregular conditional variance requires a
more careful investigation, which may be the topic of
future studies.
Although the GARCH model indicates the capability of

modelling conditional variance, it does not improve the
efficiency of the SARIMA models, especially for rainfall
data in the arid region. However, the performance of both
the SARIMA and GARCH models fitted to transformed
rainfall data in the arid region is twice better than that of
the models fitted to the original rainfall data according to
multi-criteria error evaluation. This can be an important
aspect of the rainfall time series modelling in the arid
regions that should be carefully considered. Box–Cox
transformation seems to be an effective method to reduce
the (hidden) variance of rainfall in the arid regions, which
also improves the performance of time series models.
It should also be mentioned that the DM test did

not show a notable difference between SARIMA and
SARIMA–GARCH prediction performances, except for
the nontransformed rainfall time series from the humid
region.
The results of the present study suggest that using the

GARCH approach together with an appropriate transform-
ation technique may increase the performance of the time
series models in some cases, such as our example of the
Campsie station, and may stabilize the heteroscedasticity of
rainfall time series. However, from a parsimonious point of
view and as a disadvantage of the GARCH modelling
approach, it seems that adding more parameters into rainfall
time series models by a GARCH model may not guarantee
achieving better rainfall prediction accuracy.
CONCLUSIONS AND FUTURE WORK

This study illustrated the GARCH modelling approach for a
rainfall time series with seasonal variation and showed the
advantage of a GARCH approach to model the conditional
variance of rainfall data. In order to better understand the
advantage/disadvantage of the GARCH modelling approach
for hydrologic time series modelling, especially for rainfall
in arid regions, the use of a larger database from different
regions of the world is strongly recommended in future
studies. Simulation-based studies are also necessary to
confirm and generalize the results of the present study.
Space limitations prevented this from being done in the
current study, and this should be the topic of future research
efforts. In addition, the advantage/disadvantage of GARCH
models over SARIMA models for out-of-sample forecasting
would be important to consider in future investigations.
An interesting topic for future GARCH modelling

efforts deals with modelling nonstationary hydrological
time series through climate change conditions, especially
time series with change in higher order moments such as
the variance, skewness and kurtosis. The application of
multivariate GARCH models in order to investigate the
Hydrol. Process. (2012)
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shift of the conditional variance from one variable such as
rainfall into another variable such as streamflow is also an
interesting topic for future works. Using a combination
of GARCH models with other time series modelling
approaches, such as fractional and periodic time series
models, would be useful for modelling persistence and
periodicity in the variance of different hydrologic and
climatic variables. Coupling GARCH models with smooth-
ing approaches and nonparametric methods would also be
helpful in modelling conditional variance of the hydrologic
time series.
ACKNOWLEDGEMENTS

The financial support for this study was graciously provided
by the Natural Sciences and Engineering Research Council
(NSERC) of Canada and the Canada Research Chair (CRC)
Program. The authors also thank the anonymous reviewer for
useful comments, which improved the quality of the paper.
REFERENCES

Adeloye AJ, Montaseri M. 2002. Preliminary streamflow data analyses
prior to water resources planning study. Hydrological Sciences Journal
47: 679–692.

Astel A, Mazerski J, Polkowska Z, Namieśnik J. 2004. Application of
PCA and time series analysis in studies of precipitation in Tricity
(Poland). Advances in Environmental Research 8: 337–349.

Bollerslev T. 1986. Generalized Autoregressive Conditional Heterosce-
dasticity. Journal of Econometrics 31: 307–327.

Box GE, Cox DR. 1964. An analysis of transformed data. Journal of
Royal Statistical Society B 39: 211–252.

Chen CH, Liu CH, Su HC. 2008. A nonlinear time series analysis using
two-stage genetic algorithms for streamflow forecasting. Hydrological
Processes 22: 3697–3711.
Copyright © 2012 John Wiley & Sons, Ltd.
Dawson CW, Abrahart RJ, See LM. 2007. Hydrotest: A web-based
toolbox of evaluation metrics for the standardized assessment of
hydrological forecasts. Environmental Modeling and Software
22: 1034–1052.

Diebold FX, Mariano, RS. 1995. Comparing predictive accuracy. Journal
of Business and Economic Statistics 13: 253–263.

Engle RF. 1982. Autoregressive Conditional Heteroscedasticity with
Estimates of Variance of United Kingdom Inflation. Econometrica
50: 987–1008.

Hipel KW, McLeod AE. 1996. Time series modeling of water resources
and environmental systems. Elsevier: Amsterdam, the Netherlands.

Ljung GM, Box GEP. 1978. On a Measure of Lack of Fit in Time Series
Models. Biometrika 65: 297–303.

Lye LM. 1993. A technique for selecting the Box-Cox transformation
in flood frequency analysis. Canadian Journal of Civil Engineering
20: 706–766.

Machiwal D, Jha M. 2008. Comparative evaluation of statistical tests for
time series analysis: application to hydrological time series. Hydrological
Sciences Journal 53: 353–366.

Mohammadi H, Su L. 2010. International evidence on crude oil price
dynamics: Applications of ARIMA-GARCH models. Energy Economics
32: 1001–1008.

Modarres R. 2007. Streamflow drought time series forecasting. Stochastic
Environmental Research and Risk Assessment 21: 223–233.

Modarres R. 2009. Multi-criteria validation of artificial neural network
rainfall-runoff modeling. Hydrology and Earth System Sciences
13: 411–421.

Ouarda TBMJ, Labadie JW, Fontane G. 1997. Indexed sequential
hydrologic modeling for hydropower capacity estimation. Journal of
the American Water Resources Association 33: 1–13.

Romilly P. 2005. Time series modeling of global mean temperature for
managerial decision-making. Journal of Environmental Management
76: 61–70.

Toth E, Montanari A, Brath A. 1999. Real-time flood forecasting via
combined use of conceptual and stochastic models. Physics and
Chemistry of the Earth (B) 24: 793–798.

Wang W, Vrijling JK, Van Gelder PHAJM, Ma J. 2005. Testing and
modeling autoregressive conditional heteroskedasticity of streamflow
processes. Nonlinear Processes in Geophysics 12: 55–66.

WeiWWS. 2006. Time series analysis, univariate and multivariate methods.
Pearson Education, Inc.: USA.

Worrall F, Burt TP. 1999. A univariate model of river water nitrate time
series. Journal of Hydrology 214: 74–90.
Hydrol. Process. (2012)


